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Comparison of isothermal and non-isothermal pipeline gas flow models

Andrzej J. Osiadacz∗, Maciej Chaczykowski
Institute of Heating and Ventilation, Warsaw University of Technology, Nowowiejska 20, 00-653 Warsaw, Poland

Received 10 December 1998; received in revised form 31 May 2000; accepted 2 June 2000

Abstract

The transient flow of gas in pipes can be adequately described by a one-dimensional approach. Basic equations describing the transient
flow of gas in pipes are derived from an equation of motion (or momentum), an equation of continuity, equation of energy and state equation.

In much of the literature, either an isothermal or an adiabatic approach is adopted. For the case of slow transients caused by fluctuations
in demand, it is assumed that the gas in the pipe has sufficient time to reach thermal equilibrium with its constant-temperature surroundings.
Similarly, when rapid transients were under consideration, it was assumed that the pressure changes occurred instantaneously, allowing no
time for heat transfer to take place between the gas in the pipe and the surroundings.

For many dynamic gas applications, this assumption of a process having a constant temperature or is adiabatic is not valid. In this case,
the temperature of the gas is a function of distance and is calculated using a mathematical model, which includes the energy equation.

In the paper, a comparison of different (isothermal and non-isothermal) models is presented. Practical examples have been used to
emphasize differences between models. © 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

It is a well-established fact that flow in gas pipelines is
unsteady. Conditions are always changing with time, no mat-
ter how small some of the changes may be. When model-
ing systems, however, it is sometimes convenient to make
the simplifying assumption that flow is steady. Under many
conditions, this assumption produces adequate engineering
results. On the other hand, there are many situations where
an assumption of steady flow and its attendant ramifications
produce unacceptable results. Dynamic models are just a
particular class of a differential equation model in which
time derivatives are present.

During transport of gas in pipelines, the gas stream loses
a part of its initial energy due to frictional resistance which
results in a loss of pressure. This is compensated for by
compressors installed in compressor stations.

Compression of the gas has the undesired side effect of
heating the gas. The gas may have to be cooled to prevent
damage to the main transmission pipeline. If the cooler is
installed, heat from the gas is passed to the air in a force
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draught heat exchanger in which one or more fans operate,
depending on the number of compressors in service.

Cooling of the gas is desirable because it improves the
efficiency of the overall compression process. As always,
it is a matter of balancing capital and maintenance costs
against operating costs.

2. Basic equations

The transient flow of gas in pipes can be adequately
described by a one-dimensional approach. Basic equations
describing the transient flow of gas in pipes are derived
from an equation of motion (or momentum), an equation
of continuity, equation of energy and state equation [7]. In
practice, the form of the mathematical models varies with
the assumptions made as regards the conditions of operation
of the networks. The simplified models are obtained by ne-
glecting some terms in the basic model as a result of a quan-
titative estimation of the particular elements of the equation
for some given conditions of operation of the network [3,8].

2.1. Conservation of mass: continuity equation

Generally, the continuity equation is expressed in the form

−∂(ρw)

∂x
= ∂ρ

∂t
(1)
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Nomenclature

A cross-section area of the pipe (m2)
cp specific heat at constant pressure (J/kg K)
cv specific heat at constant volume (J/kg K)
D pipe diameter (mm)
f Fanning friction coefficient (–)
g the net body force per unit mass

(the acceleration of gravity) (m/s2)
k pipe roughness (mm)
kL heat transfer coefficient (W/m K)
L pipeline length (m)
M mass flow (kg/s)
p(x) pressure atx (Pa)
q the heat addition per unit mass per

unit time (W/kg)
Qn flow (under standard conditions; flow

rateQn is shown in the standard
conditions of 273.15 K, 0.1 MPa) (m3/h)

R specific gas constant (J/kg K)
t time (s)
T gas temperature (K)
Tsoil soil temperature (K)
w flow velocity (m/s)
x spatial coordinate (m)
Z compressibility factor (–)

Greek symbols
α the angle between the horizon and

the directionx
λ thermal conductivity coefficient

of gas (W/m K)
µ viscosity of natural gas (N s/m2)
ρ density of gas (kg/m3)

wherew is the flow velocity, andρ is the density of gas.
SubstitutingM=ρwA, we have

− 1

A

∂M

∂x
= ∂ρ

∂t
(2)

whereA is the cross-sectional area of the pipe, andM is the
mass flow.

2.2. Newton’s second law of motion: momentum equation

According to [2], the basic form of momentum equation
can be expressed in the form

−∂p

∂x
− 2fρw2

D
− gρ sinα = ∂(ρw)

∂t
+ ∂(ρw2)

∂x
(3)

where f is the Fanning friction coefficient,g the net body
force per unit mass (the acceleration of gravity), and where
α is the angle between the horizon and the directionx.

The constituent factors(∂/ot)(gw), ((2fρw2)/D), (ρg

sinα) and(∂/∂x)(ρw2) define the gas inertia, hydraulic

friction force, force of gravity and the flowing gas dynamic
pressure, respectively.

2.3. State equation

An equation of state for a gas relates the variablesp, ρ,
andT. The type of equation which is commonly used in the
natural gas industry is [6,11]

p

ρ
= ZRT (4)

where the deviation from the ideal gas law is absorbed in
the compressibility factorZ, which is a function ofp andT.

2.4. Conservation of energy

The basic form of energy equation, according to [10], is
the following:

qρA dx = ∂

∂t

[
(ρA dx)

(
cvT + w2

2
+ gz

)]

+ ∂

∂x

[
(ρwAdx)

(
cvT + p

ρ
+ w2

2
+ gz

)]
(5)

whereq is the heat addition per unit mass per unit time,
T the gas temperature, and wherecv is the specific heat at
constant volume.

Before going over to analysis of transient conditions, the
simple case of steady-state conditions will be considered.

3. Steady-state non-isothermal model

The temperature of gas, as a function of length of the pipe,
is calculated using the heat balance equation, assuming that
heat transfer process is quasi-steady-state, expressed by the
following equation:

cpM dT = −kL(T − Tsoil) dx (6)

wherecp is the specific heat at constant pressure, J/kg K;M
the mass flow, kg/s;kL the heat transfer coefficient, W/m K;
T the gas temperature, K; and whereTsoil is the soil temper-
ature, K.

The form of Eq. (6) results from the following transfor-
mations of Eq. (11). Since under steady-state conditions

∂

∂t

[
(ρA dx)

(
cvT + w2

2
+ gz

)]
= 0

we can write the energy equation describing the flow of gas
throw the horizontal pipe in the form

qρA dx = ∂

∂x

[
(ρwAdx)

(
cvT + p

ρ
+ w2

2

)]

The quantitative analysis of energy equation (Section 4.1)
has shown that, under steady-state conditions, term (III)
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(spatial derivative of the kinetic energy) can be neglected in
comparison with other convective terms. Substituting the en-
thalpy and neglecting term (V) (heat conduction through the
gas along the pipeline), we finally obtain the energy equa-
tion in the form of the heat balance equation. Eq. (6) can be
written in the form

dT

T − Tsoil
= − kL

cpM
dx

By integrating betweenT(0), (Tx=0) andT(x), x∈(0,L], we
get

∫ T (x)

T (0)

dT

T − Tsoil
= − kL

cpM

∫ x

0
dx

Finally,

T (x) = Tsoil + (T (0) − Tsoil)e
−βx (7)

whereβ=kL/(cpM).
For non-isothermal steady-state flow, pressure at a specific

point of the pipe can be expressed by the following equation
[1]:

p(x) =
√

(P (0)2) − KM2 (8)

wherep(0) is the pressure atx=0, Pa;M the mass flow, kg/s;
and whereK is the coefficient defined by the equation

K = ZR

A2

[
4f

D

(
Tsoilx+T (0) − Tsoil

β
− T (0) − Tsoil

β
e−βx

)

−2(T (0) − T (x))

]
(9)

wherex is the spatial coordinate, m;f the Fanning friction
coefficient;Z the compressibility factor;R the specific gas
constant, J/kg K; and whereA is the cross-sectional area of
the pipe, m2.

Specific heat at constant pressure can vary strongly with
temperature of the gas. In the gas transportation systems, the
temperature ranges are modest and the value of specific heats
may be assumed constant [4]. Such an assumption, however,
cannot be applied with regard to the compressibility factor.
Its value varies significantly with temperature and pressure
of the gas and separate calculations are carried out for every
discretization section of the pipeline.

Fig. 1. Structure of gas transportation system.

3.1. Steady-state simulation

Differences between two models (isothermal and non-
isothermal) were analyzed using a part of the existing real
gas system, Yamal — West Europe. This gas transportation
system (Fig. 1) consists of five compressor stations, installed
on the Polish terrain. At each compressor station, there are
installed between two and three centrifugal compressors,
driven by gas turbines. For the purpose of our investigation,
one pipe between two compressor stations was taken.

Calculations were carried out for the following para-
meters:
• pipe diameterD=1422 mm, pipe wall thickness 19.2 mm;
• pipeline lengthL=122 km;
• pressure atx=0 (discharge pressure)p1=8.4 MPa;
• temperature atx=0 (discharge temperature)T |x=0=

42.5◦C;
• density of natural gas (under standard conditions)

ρn=0.7156 kg/m3;
• viscosity of natural gasµ=0.135×10−4 N s/m2;
• flow (under standard conditions)Qn=2 019 950 m3/h;
• soil temperatureTsoil=12◦C;
• heat transfer coefficientkL=25 W/m K;
• pipe roughnessk=0.03 mm.

Fanning friction coefficient and compressibility factor
were calculated for every discretization section of the
pipeline using Nikuradse [1] and SGERG 88 [5] equations,
respectively. Results of the investigations are shown in
Figs. 2 and 3.

Maximum pressure difference between isothermal and
non-isothermal flow is given in the following equation:

δmax= pisotherm|x=J − pn-isotherm|x=J

pisotherm|x=J

× 100%

= 7.894− 7.879

7.894
× 100= 0.19%

Maximum pressure difference between non-isothermal flow
(without cooling system) and non-isothermal flow (with
cooling system) is given in the following equation (see
Table 1):

δmax= pn-isotherm|x=J − pn-iso-c|x=J

pn-isotherm|x=J

× 100%

= 7.894− 7.885

7.894
× 100= 0.11%
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Fig. 2. Temperature profile along the pipeline for (a)T=const,T0=12◦C, (b) T6=const,T0=42.5◦C, (c) T6=const,T0=30◦C.

Fig. 3. Change in pressure along the pipeline for (a)T=const,T0=12◦C, (b) T6=const,T0=42.5◦C, (c) T6=const,T0=30◦C.
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Table 1
Comparison of capacity of the pipeline for the above-analyzed cases

Discharge temperature (◦C) Capacity (m3/h) Capacity difference

m3/h %

42.5 (without cooling system) 2019949.7 – –
30.0 (with cooling system) 2032010.2 12060.5+0.6
12.0 (soil temperature) 2049998.4 30048.7+1.5

Fig. 4 shows that, for non-isothermal flow, the pressure
drop along the pipeline is greater than in the isothermal
case. It is a result of the decrease of the density of the gas,
allowing the smaller mass of gas to be transported at the
specific velocity.

In Fig. 5, the difference in HP used by compressor stations
is presented. We can see significant difference in the energy
consumption of the drivers of the compressors of each case.
It means that the cost of running the transportation system
is a function of discharge temperature. The lowest costs
correspond to the isothermal flow.

It is clear that, by decreasing the discharge temperature of
the gas, the effectiveness of the transportation process can
be significantly increased.

4. Transient non-isothermal model

With respect to the conveyance of gas in pipelines, there
are two technically relevant extreme cases of pipe flow:
• flow without heat exchange with the ground outside: adi-

abatic, and more especially, isentropic flow;

Fig. 4. Comparison of suction pressures for the whole transportation system.

• flow with heat exchange with the ground outside, which
is regarded as being a heat storage unit of infinite capacity
with constant temperatureT0: isothermal flow.
The flow processes of greatest concern here are those

in which temperature equalization with the ground outside
cannot take place. The temperature profile is a function
of pipeline distance. In this case, the transient, non-isothermal
flow of gas in a horizontal pipe (ρgsinα=0, ((∂/∂x)(ρwAgz
dx))=0) is described by the system of equations (2)–(5).

Two contradictory constraints are imposed on the above
equations. The requirement is that, on the one hand, the de-
scription of the phenomenon is accurate, and on the other,
there is sufficient simplification to allow the solving of this
model by reasonable computation means. As a rule, sim-
plified models are sought which present a reasonable com-
promise between the accuracy of the description and the
costs. The simplified models are obtained by neglecting
some terms in the basic (accurate) equation. This results
from the quantitative estimation of particular elements of
the equation, carried for some given conditions of opera-
tion of the pipeline. This means that the model of transient
flow used for simulation should be fitted to the given con-
ditions of operation of the pipe. A necessary condition for
proper selection of the model is therefore the earlier analy-
sis of these conditions. Estimation of the particular terms of
Eq. (5) for given operating conditions and a given geometry
of the pipe is given below.

4.1. Energy equation simplifications

Assuming that heat transfer is limited only to conduction
through a walled tube and the gas along a pipeline, the



46 A.J. Osiadacz, M. Chaczykowski / Chemical Engineering Journal 81 (2001) 41–51

Fig. 5. HP as a function of discharge temperature for the whole transportation system.

following equation can be written:

qρA dx = A
∂

∂x

(
λ

∂T

∂x

)
dx − kL(T − Tsoil) dx (10)

where λ is the thermal conductivity coefficient of gas,
W/m K; andkL is the heat transfer coefficient, W/m K.

Combining Eqs. (5) and (10), the final version of the equa-
tion can be put into the form

∂

∂x
(ρwAcvT dx)︸ ︷︷ ︸

I

+ ∂

∂x

(
ρwAp

ρ
dx

)
︸ ︷︷ ︸

II

+ ∂

∂x

(
ρAw3

2
dx

)
︸ ︷︷ ︸

III

+ ∂

∂x
(ρwAgzdx)︸ ︷︷ ︸

IV

− ∂

∂x

(
λA

∂T

∂x
dx

)
︸ ︷︷ ︸

V

+ kL(T − Tsoil) dx︸ ︷︷ ︸
VI

+ ∂

∂t
(ρAcvT dx)︸ ︷︷ ︸

VII

+ ∂

∂t

(
ρAw2

2
dx

)
︸ ︷︷ ︸

VIII

+ ∂

∂t
(ρAgzdx)︸ ︷︷ ︸

IX

= 0

(11)

By integrating the above equation betweenx=0 andx=L
(whereL is the length of the pipe) for the following param-
eters of the system:
• pipe diameterD=1422 mm, pipe wall thickness 19.2 mm;
• pipeline lengthL=122 km;

• pressure atx=0 (discharge pressure)p1=8.4 MPa;
• suction pressurep2=7.88 MPa;
• temperature atx=0 (discharge temperature)T |x=0=

42.5◦C;
• temperature atx=L (suction temperature)T |x=L=13◦C;
• density (under standard conditions)ρn=0.7156 kg/m3;
• flow (under standard conditions)Qn=2 019 950 m3/h;
• soil temperatureTsoil=12◦C;
• heat transfer coefficientkL=25 W/m K;
• thermal conductivity coefficient of gasλave=3.4×10−2

W/m K;
• specific gas constantR=518.8 J/kg K;
• specific heat at constant pressurecp=2.278×103 J/kg K;
• specific heat at constant volumecv=1.759×103 J/kg K;

we get the following values for each term of the
equation

∫ L

0

∂

∂x
(ρwAcvT ) dx ≈ ρnQncv(T |x=L − T |x=0)

= 0.7156× 2 019 950

3600
× 1.759× 103 × (286− 315.5)

= −2.08× 107 W → O(107) (I)

∫ L

0

∂

∂x

(
ρwAp

ρ

)
dx ≈ ρnQnZR(T |x=L − T |x=0)

= 0.7156× 2 019 950

3600
× 0.97× 518.8 × (286− 315.5)

= −6.0 × 106 W → O(106) (II)
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∫ L

0

∂

∂x

(
ρAw3

2

)
dx ≈ 1

2
ρnQn(w

2|x=L − w2|x=0)

= 1

2
× 0.7156× 2 019 950

3600
× (4.962 − 5.132)

= −3.4 × 102 W → O(102) (III)∫ L

0

∂

∂x
(ρwAgz) dx ≈ ρnQng(z|x=L − z|x=0) (IV)

Assuming that the difference of levels is, e.g. 100 m, we get

ρnQng(z|x=L − z|x=0) = 0.7156× 2 019 950

3600
×9.81× 100

= 3.9 × 105 W → O(105)

−
∫ L

0

[
∂

∂x

(
λA

∂T

∂x

)]
dx ≈ −λaveA

1T |x=L − 1T |x=0

1x

(V)

from the steady-state analysis, we have

1T

1x

∣∣∣∣
x=0

= 4.8

6100
K/m

1T

1x

∣∣∣∣
x=L

= 0.2

6100
K/m

−λaveA
1T |x=L − 1T |x=0

1x

= −3.4 × 10−2 × π × 1.38362

4
× 4.8 − 0.2

6100
= 3.9 × 10−5 W → O(10−5)∫ L

0
kL(T − Tsoil) dx ≈ kLL 1Ts (VI)

Substituting the mean temperature difference between the
gas and the soil,1Ts=15.75 K, we have

kLL 1Ts = 25× 1.22× 105 × 15.75

= 4.8 × 107 W → O(107)∫ L

0

∂

∂t
(ρAcvT ) dx ≈ ρAcvL

1T

1t
(VII)

Let the increment of the temperature be 5 K and let it be
achieved within1t=1 h. Substituting the mean value of gas
density along the pipeline,̄ρ = 64.27 kg/m3, we get

ρ̄AcvL
1T

1t
= 64.27× π × 1.38362

4
× 1.759× 103

×1.22× 105 × 5

3600
= 2.88× 107 W

→ O(107)∫ L

0

∂

∂t

(
ρAw2

2

)
dx ≈ Lw̄

2

∂(ρAw)

∂t
≈Lw̄ρn

2

1Qn

1t
(VIII)

Let the increment of the load of the pipeline atx=L be 0.5Qn
and let it be achieved within∆t=1 h. We then get

Lw̄ρn

2

1Qn

1t
= 1.22× 105 × 5.04× 0.7156

2
× 1 009 975

3600
= 6.18× 107 W → O(107)

∫ L

0

∂

∂t
(ρgzA) dx ≈ ρgAL

∂z

∂t
= 0 (for each gas pipeline)

(IX)

Based on above-given analysis, we can write the simplified
form of the energy equation:

kL(Tsoil − T ) dx = ∂

∂t

[
(ρA dx)

(
u + w2

2

)]

+ ∂

∂x

[
(ρwAdx)

(
u + p

ρ

)]

The character of the results cannot be generalized. This can
only be the starting point, which allows the forwarding of
the hypothesis that, in the case when the selected parameters
do not change rapidly, transient non-isothermal flow through
the horizontal pipe can be represented be the set of equations
in the form


−∂(ρw)

∂x
= ∂ρ

∂t

−∂p

∂x
− 2fρw2

D
= ∂(ρw)

∂t
+ ∂(ρw2)

∂x

kL(Tsoil − T ) dx = ∂

∂t

[
(ρA dx)

(
u + w2

2

)]

+ ∂

∂x

[
(ρwAdx)

(
u + p

ρ

)]
p

ρ
= ZRT

4.2. Transient simulation

The investigations were carried out using the method of
lines [9] for the following values of parameters (Fig. 6):
• pipe diameterD=1422 mm, pipe wall thickness 19.2 mm;
• pipeline lengthL=122 km;
• temperature atx=0 (discharge temperature)T |x=0=

42.5◦C;
• density (under standard conditions)ρn=0.7156 kg/m3;
• soil temperatureTsoil=12◦C;
• heat transfer coefficientkL=25 W/m K;
• thermal conductivity coefficient of gasλave=3.4×10−2

W/m K;
• specific gas constantR=518.8 J/kg K;
• specific heat at constant pressurecp=2.278×103 J/kg K;
• specific heat at constant volumecv=1.759×103 J/kg K;

p(0, t) = const= 8.4 MPa
Qn(L, t) = f (t)

}
boundary conditions
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Fig. 6. Structure of the gas transportation system.

The functionQn(L, t)=f(t) is shown in Fig. 7. For a given
range of variation of the load, flow behavior in the pipeline
is approximated accurately by the rough-pipe flow law
[1]. This law is represented by the horizontal lines in the
Moody diagram of friction factor, with each line corre-
sponding to a specific value of the relative roughness of the
pipe.

Results of calculation are presented in Figs. 8–12.
Maximum pressure difference between non-isothermal

flow (without cooling system) and isothermal flow is given
in the following equation:

δmax= pisotherm|x=J − pn-isotherm|x=J

pisotherm|x=J

× 100%

= 7.145− 7.067

7.145
× 100= 1.09%

Maximum pressure difference between non-isothermal
flow (without cooling system) and non-isothermal flow

Fig. 7. Change in flow with time (x=L) — boundary condition.

(with cooling system) is given in the following equation:

δmax= pisotherm|x=J − pn-isotherm|x=J

pisotherm|x=J

× 100%

= 7.145− 7.117

7.145
× 100= 0.39%

Profile of temperature atx=L is caused by load variations
and by distributed velocity of the gas along the pipeline.

Maximum compressor ratio difference between non-
isothermal flow (without cooling system) and isothermal
flow is given in the following equation:

|1εmax| =
∣∣∣∣εisotherm− εn-isotherm

εisotherm

∣∣∣∣ × 100%

=
∣∣∣∣1.18− 1.26

1.18

∣∣∣∣ × 100= 6.78%

Maximum compressor ratio difference between non-
isothermal flow (with cooling system): and isothermal flow
is given in the following equation:

|1εmax| =
∣∣∣∣εisotherm− εn-isotherm

εisotherm

∣∣∣∣ × 100%

=
∣∣∣∣1.074− 1.078

1.074

∣∣∣∣ × 100= 0.37%

Maximum HP difference necessary to keep constant dis-
charge pressure at compressor station no. 2 (Fig. 6) for
non-isothermal flow (without cooling system) and isother-
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Fig. 8. Change in pressure atx=L.

Fig. 9. Change in temperature atx=L.
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Fig. 10. Change in pressure along the pipeline fort=12 h.

Fig. 11. Change in compressor ratio at compressor station no. 2.
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Fig. 12. Changes in HP at compressor station no. 2 for the isentropic compression.

mal flow is given in the following equation:

|1Nmax| =
∣∣∣∣Nisotherm− Nn-isotherm

Nisotherm

∣∣∣∣ × 100%

=
∣∣∣∣0.666− 1.255

0.666

∣∣∣∣ × 100= 88.43%

Maximum HP difference necessary to keep constant the
discharge pressure at compressor station no. 2 (Fig. 6) for
non-isothermal flow (with cooling system) and isothermal
flow is given in the following equation:

|1Nmax| =
∣∣∣∣Nisotherm− Nn-isotherm

Nisotherm

∣∣∣∣ × 100%

=
∣∣∣∣0.666− 0.807

0.666

∣∣∣∣ × 100= 21.17%

5. Conclusions

It is clear that cooling of the gas improves the efficiency
of the overall compression process. There exists a significant
difference in the pressure profile along the pipeline between
isothermal and non-isothermal process. This difference in-
creases when the quantity of gas increases. This shows that,
in the case when gas temperature does not stabilize, the
use of an isothermal model leads to significant errors. The

problem of choosing the correct model is a function of
network structure and network complexity.
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